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We report the first observation of the complete quenching of the Hall effect in a one-dimensional con-
ductor. In our narrowest wires at low temperatures and for small magnetic fields, where the 1D subband
splittings exceed both kBT and Aw., we observe striking departures from the 2D Hall effect, character-
ized by an unexpected low-field plateau and a precipitous, complete suppression of the Hall resistance.
We believe these to be unambiguous manifestations of one-dimensional electrical transport; they appear
to provide a direct measure of the number of quantum conduction channels that participate.

PACS numbers: 72.20.My, 73.50.Jt, 73.60.Br

Electrical transport ceases to display behavior charac-
teristic of the bulk when probed over very short dis-
tances. Conceptually, one expects that naive scaling of
macroscopic properties down to small dimensions will
fail at length scales on which the intrinsic physics of the
system is determined. Three distinct small size regimes
have emerged; these are demarcated by the electron’s
phase-coherence length [, =(Dq1,)"? its mean free
path / =vgr, and its Fermi wavelength Ap=2n/kr. Here
D is the elastic diffusion constant (vZz/3 in 3D), 7, and
7 are the phase-coherence and total electron lifetime, re-
spectively, and vr and kg are the Fermi velocity and
wave vector.

Solid-state Aharonov-Bohm oscillations and universal
conductance fluctuations are observed at lengths of order
l,. In this regime, although the electron propagates
diffusively, it retains phase memory and, consequently,
can exhibit quantum interference. At length scales of
order /, transport becomes strongly nonlocal. Scattering
events outside a region of this size determine its “resis-
tance”— within it electrons propagate ballistically. In
this Letter, as in the very recent work by Berggren et
al.,' Hansen et al.,> and Timp et al.,* we focus upon a
newly accessible and entirely different size regime, that
of quantum transport. It is entered when high-mobility
structures are scaled down to dimensions approaching
AfF, which characterizes the spatial extent of the electron
wave function. Here the boundaries of the structure
confining the electron gas determine the eigenstates par-
ticipating in transport.

We report here the first observation of the quenching
of the Hall effect in conducting paths of width w==Ag.
When a macroscopic conductor is subjected to a magnet-
ic field normal to the direction of the current flow, a
transverse electric field arises to balance the Lorentz
force on the electron. In the quasi-1D regime, however,
the development of this Hall field may be impaired by
discreteness in the transverse-mode spectrum. Since
each transverse eigenstate has a specific density profile,
arbitrary charge distributions may not be constructed

until many such states are energetically accessible. At
very large magnetic fields, when hw, greatly exceeds the
level spacing, 2D behavior should be recovered. Here,
w.=eB/m* is the cyclotron frequency and m* is the
(2D) effective mass of the electron. It is the quasi-1D
regime at small magnetic fields that we investigate in
this work.

Our wires are laterally patterned from high-mobility,
modulation-doped GaAs-AlGaAs heterojunction materi-
al, with use of electron-beam lithography and ion-beam-
assisted etching. A complete description of our new
technique of defining narrow conducting paths by selec-
tive ion etch damage is presented elsewhere.* At 4.2 K,
the measured mobility and carrier density in the unpat-
terned material are 5.4x10° cm?/(V s) and 5.3x10'!
cm "2, respectively, yielding /=7 um. These values are
essentially preserved in our small wires. The experi-
ments are performed at 4.2 K in an environment careful-
ly shielded against electromagnetic interference. We
make four-terminal magnetoresistance measurements

FIG. 1. Scanning electron micrograph of 75-nm quantum-
well wires. Current flows along the long wire; five pairs of
transverse voltage probes placed on =2-um spacing permit
four-terminal Hall measurements.
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with a < 1-nA constant ac drive current at 17 Hz. Four
separate channels of electronics allow simultaneous mea-
surement of structurally identical, single wires fabricated
on the same chip connected and cooled at the same time.
In this way we have obtained magnetoresistance mea-
surements on many, nominally identical, quantum-well
wires. This allows us to isolate and ignore artifacts aris-
ing from spatially inhomogeneous electron density and
focus on the systematic effects which arise from lateral
confinement.

We have studied quantum-well wires having structural
widths, wg,, ranging from 1100 nm downward to roughly
75 nm (see Fig. 1). All conduct without illumination at
4.2 K. We determine wg, by scanning electron micros-
copy; the electrical widths of the conducting paths, we,
however, are much more difficult to determine precisely.
We note that, as our wire width is reduced, the longitu-
dinal resistance roughly scales with geometry and that
the region of anomalous Ry grows monotonically. We
believe that these indicate that we=wg,. We also ob-
serve Aharonov-Bohm oscillations in a =250-nm-diam
loop of =75-nm “wire.” This evidence for a multiply
connected geometry of very small dimensions precludes a
gross “sloshing” out of carriers from beneath the mask.*

In Fig. 2 we display magnetoresistance data obtained
from a 100-nm sample, taken at 4.2 K. The well-defined
integral quantum Hall plateaus stay centered about the
line defining the ordinary Hall effect (Ry=B/nse).
Here, n; is the sheet (2D) carrier density. These fea-
tures, representative of the data obtained at all widths,
indicate that the current paths follow well-defined
geometries, that the electron density is spatially homo-
geneous, and that conduction paths in parallel with the
2D electron gas are negligible.

The inset in Fig. 2 shows the low-field Hall resistance
of a 75-nm wire at 4.2 K, and also at =50 K. The low-
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FIG. 2. Longitudinal and Hall resistance for a 100-nm-wide
Hall bar at 4.2 K. Dotted line is classical Hall resistance for
reference. Inset: Quenched Hall resistance near B =0 for a
75-nm wire at 4.2 K, and behavior at = 50 K.
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temperature curve shows that Ry is strongly quenched in
the region between + 100 mT. We note that Ry is an-
tisymmetric in B when it breaks out of the quenched re-
gion. In the narrowest of our wires we occasionally ob-
serve offsets in Ry at zero field; these are always less
than one percent of R,,. On a given sample of constant
wire width < 200 nm, each of the five pairs of transverse
voltage probes (see Fig. 1) generally shows a quenching
of Ry below the same value of B, whereas the small
offsets at B=0 show no such systematic behavior. These
offsets may therefore arise from secondary considera-
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FIG. 3. Systematic development of the low-field structure as
the wire width decreases from 1100 to 75 nm. A barely per-
ceptible change in the slope of the Hall resistance (solid lines)
evolves into a complete quench and plateau for the smallest
wire, 75 nm. The peaks in the longitudinal resistance (dashed
lines), symmetrically displaced about B =0, correlate with the
Hall anomalies. The dotted lines correspond to the classical
Hall resistance. Zero-field offsets resolved in these magnified
R, plots always amount to < 1% of R.
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tions specific to each probe pair, such as slight transverse
misalignment or nonlocal impurity-scattering effects.
Dependence upon longitudinal current is negligible.
Only after we increase the drive level by 3 orders of
magnitude (to J==0.13 A/cm in the 75-nm wire) does
measurable slope at zero field appear. We attribute this
behavior simply to electron heating.

We have systematically investigated the width depen-
dence of these effects in numerous quantum-well wires.
Six representative low-field curves are presented in Fig.
3. The progressive development of the low-field anom-
alies in the Hall resistance, Ry, are evident. Quenching
is observed for w <200 nm. We also note strong low-
field features in longitudinal magnetoresistance concomi-
tant with those in Ry. Simmons, Tsui, and Weimann>
suggest such a correlation. The data indicate that the
low-field region of anomalous Ry, bounded by = B,
approximately follows a Bii=w ~*? relation. If only
one transverse subband contributed, one might expect a
w ~2 dependence. The multiple-subband nature of the
real physics, compounded with the unknown transverse
potential determining the exact level spacings, makes the
finite-temperature problem much less trivial. Simple
effects occurring when the cyclotron diameter equals the
wire width, however, would display a w ~! dependence in
the low-field regime.

To help us gain a qualitative understanding of the
anomalies in Ry at low fields, we construct the energy-
level diagram for electrons subjected to both a magnetic
field and a transverse confinement potential. We mod-
el the confinement by a harmonic potential, Ug(x)
= $ m*wéx?. This leads to simple eigenvalues,

e X)=+ho+ Im* (wiod/o?) X (1)

Here, x and y are transverse and longitudinal coordi-
nates, wo characterizes the potential, n is the level index,
and w’=wi+w? X, the guiding-center coordinate for
the Landau states,® is linearly related to the longitudinal
momentum, X =(o./w’m*)hk,. In Fig. 4(a) we plot
the Landau-level energies for orbits centered on the wire,
X =0, as functions of magnetic field.

Halperin® and MacDonald and Streda’ describe the
Hall effect for 2D systems in terms of “edge states.” If a
chemical potential difference is imposed between two
sides of a sample, it is these edge states that determine
the longitudinal current. It is assumed that the Fermi
level lies between Landau levels within the conductor,
but that it crosses them at the edges. Each crossing pro-
vides one state to support the longitudinal current at the
edge.

In large magnetic fields, 2D magnetic confinement will
dominate the 1D electrostatic confinement. Expecting a
smooth crossover to the quasi-1D regime when the field
is reduced, we apply the edge-state theory and investi-
gate its implications when the transverse confinement po-
tential becomes appreciable compared to Aw.. In the

following discussion we assume spin degeneracy; thus
each state is twofold degenerate. At zero temperature,
on the assumption of a continuous manifold of longitudi-
nal states, each Landau level intersecting the Fermi level
contributes two “‘quantum conduction channels”,® at
+ k™ (EF), to electrical transport.

The longitudinal current induced by a chemical poten-
tial difference imposed between the two edges of the

sample is then given by’
I=2neAu/h, )

where Au is the chemical potential difference and we as-
sume 2n channels contribute per edge.

The issue is to understand this picture for small B
where confinement effects become important. Taking
Fig. 4(a) at face value, we conclude that the essential
feature of magnetotransport in 1D is that at small mag-
netic fields the number of channels does not become ar-
bitrarily large but hangs up at a value controlled by the
confinement potential. This implies that the Hall resis-
tance does not fall to zero in continuously diminishing
steps, but stops at a “last plateau” determined by the
number of conduction channels in the quasi one-
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FIG. 4. (a) Nonlinear fan diagram for the simple 1D mod-
el. Dotted lines show several 2D Landau levels, solid lines are
for the hybrid electric-magnetic confinement potential. The
dashed line displays the calculated Ef. For n/?w = 3.9 and
hwo=EF/7.5, eight levels are populated at B=0. (b) Corre-
sponding quantized Hall resistance cannot reach zero because
of the finite number of transverse states. The model is expect-
ed to break down near B =0, as indicated by the shaded region.
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dimensional wire. This is depicted in Fig. 4(b). Ry ap-
pears to head in to a finite intercept at zero field. Being
an odd function of magnetic field, however, it clearly
must vanish at B =0. Precisely how it descends to zero
from the region of the last plateau is not addressed by
the arguments we present here. Perturbative approaches
to the problem appear to be precluded by the singular
nature of Ry at B=0. Indeed, the experiments offer evi-
dence prima facie that Ry in quasi-ID wires is not a
well-defined quantity for small B.

We note parenthetically that the curvature and finite
intercepts of the 1D fan diagram will also cause the
Shubnikov-de Haas effect to deviate from the 1/B
periodicity holding in 2D. This has also been pointed out
previously by others.®!:3

Our experimental data support the channel-counting
picture presented here. In all of the submicron wires,
especially the smaller ones, Ry exhibits a tendency to
form a last plateau as the field is decreased. In other re-
cent studies of narrow quantum-well wires>> this tenden-
cy is also evident at low fields, but essentially left unex-
plained. (We note that in their wider wires, the last pla-
teau will occur at reduced Ry, consistent with the idea
that smaller subband splittings make more channels
available.)

As we point out earlier, our narrowest wires show a
precipitous drop from the last plateau to essentially
Ry =0 at repeatable and nonnegligible magnetic fields.
Our simple channel-counting arguments are silent on
this issue, offering no insight into either the collapsing or
the quenching of the Hall resistance at finite field. We
believe that the systematic experiments we report here
provide strong evidence for the existence of a critical
field to establish an appreciable Hall resistance. Naive-
ly, this seems as expected; by definition, one dimensional
means no transverse degrees of freedom, and hence no
transverse voltage. True 1D transport would, strictly
speaking, involve only the lowest subband and require a
large energy splitting to the excited state. To break into
two dimensions, the higher subbands must be accessed
—at the cost of the energy splitting. The data graphi-
cally demonstrate this for us. Our experimental results
do not agree with an earlier calculation of the Hall effect
in a 2D system oriented to develop a Hall voltage in the
direction normal to the plane,'® but this model may not
pertain to the 1D regime we investigate.

With the channel-counting model in hand, we can use
the value of the Hall resistance at the last plateau, Ry,
to determine the number of channels carrying the
current at B=0. The relation is simply given by
N =h/2e 2R1p. Using this, we estimate from our 75-nm
wire data that nine orbital channels, ignoring spin, are

3014

active at 4.2 K. This is approximately 3 times as many
as one estimates from the known 2D Fermi energy and
computed particle-in-a-box eigenvalues for this wire
width. A number of factors may account for this;
perhaps most interesting is the possibility that the true
boundary conditions of the ‘“cross” region (where Ry is
actually measured) may introduce additional states into
the problem. Or a simpler, and certainly less exalted,
explanation may be that our wires are wider than we
think. If we assume that the subband splittings can be
determined by the field scale of the Ry anomalies, B,
the latter seems unlikely.

In summary, we observe large and unexpected anoma-
lies in the Hall resistance at low temperatures and low
magnetic fields when both kg7 and Aw, are less than the
energy splitting of the states created by transverse con-
finement. We develop arguments to explain a last pla-
teau in the Hall resistance based on the fact that, unlike
the situation in 2D, conduction in 1D wires at low mag-
netic fields involves only a finite number of states. These
arguments, however, lead to the paradoxical and unphys-
ical result that the Hall resistance should jump discon-
tinuously at zero field. Experimentally we find that the
resistance drops precipitously at small, but finite, mag-
netic field to near zero in our smallest wires. At present
we have no insight as to why the Hall effect is quenched
or what mechanism controls the point at which the last
plateau is driven to zero.

We wish to thank P. W. Anderson for helpful discus-
sions.
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FIG. 1. Scanning electron micrograph of 75-nm quantum-
well wires. Current flows along the long wire; five pairs of
transverse voltage probes placed on =2-um spacing permit
four-terminal Hall measurements.



